2022-2023 学年度第一学期期中测试卷 八年级(初二)数学参考答案及评分意见

八年级(初二)数学参考答案及评分意见 一、选择题(本大题共8小题,每小题3分,共24分) 1. A; 2. D; 3. B; 4. D; 5. C; 6. C; 7. B; 8. A. 二、填空题(本大题共6小题,每小题3分,共18分) 9. 100°; 10. (1, 3); 11. 70°; 12. 45°; 13. (0, 3); 14. 80°或 50°或 20°. 三、解答题(本大题共4小题,每小题6分,共24分) 15. 解: (1) $::AD \perp BC$, $\therefore \angle ADB = \angle ADC = 90^{\circ}$, ……2分 在 $\triangle ACD$ 中, $\angle C=65^{\circ}$, $\therefore \angle CAD = 90^{\circ} - 65^{\circ} = 25^{\circ}$. -----3 分 $(2) : \angle ADB = 90^{\circ}$, $\therefore \angle 1 = \angle 2 = 45^{\circ}$, ·····4 分 $\therefore \angle BAC = \angle 1 + \angle DAC = 45^{\circ} + 25^{\circ} = 70^{\circ}$6 分 16. 解: (1) 设这个多边形的边数为 n, 则根据题意,得 $(n-2) \times 180 = 2 \times 360$. ·····2 分3 分 解得 *n*=6. :· 这个多边形的边数为 6. -----4 分 (2) 六边形的对角线条数是 $(6-3) \times 6 \div 2 = 9$6 分 17. 解: (1) 如图 1 中的点 P 所作. -----3 分 (2) 如图 2 的直线 CO 为所作.6 分 图2 说明:画图2分,说明1分. 18. 解: (1) 由题意,得 a-3=0, b-4=0, ·····1 分 解得 *a*=3, *b*=4. ……3分 (2) 由方程|x-2|=1,解得 x=3 或 x=1. ·····4 分

-----5 分

.....6 分

当 c=3 时,有 c=a $\neq b$, $\therefore \triangle ABC$ 是等腰三角形.

当 c=1 时,有 c+a=b,: 不能构成三角形.

四、解答题(本大题共3小题,每小题8分,共24分)	
19. 解: (1) 由题意,得 <i>a</i> -2=-1×2,解得 <i>a</i> =0.	1分
A (0, 3), B (-2, 3).	2分
AB= 0+2 =2.	4 分
(2) ∵ <i>AB</i> // y 轴,∴A、B 的横坐标相同,∴a=-2.	5分
设 AB 与 x 轴相交于点 C ,则 $OC=2$, $AB=4$.	6分
$ \cdot \cdot S_{\triangle AOB} = \frac{1}{2} AB \cdot OC = \frac{1}{2} \times 4 \times 2 = 4 . $	8分
20. (1) 证明: ∵AD 平分∠BAC, ∠C=90°, DE⊥AB 于 E,	
$\therefore DE = DC.$	
在 $Rt\triangle CDF$ 与 $Rt\triangle EDB$ 中,	
$\int DF = DB$	
$\begin{cases} DF = DB \\ DC = DE \end{cases}$	
$\therefore Rt \triangle \mathit{CDF} \cong Rt \triangle \mathit{EDB} \ (HL),$	
:: CF = EB.	3分
(2) 解: 设 $CF = x$,则 $AE = 12 - x$,	4 分
$\because AD$ 平分 $\angle BAC$, $DE \bot AB$,	
$\therefore CD = DE$.	5 分
在 Rt △ACD 与 Rt △AED 中,	
$\int AD = AD$	
$\begin{cases} AD = AD \\ CD = DE \end{cases},$	
$\therefore \mathbf{Rt} \triangle ACD \cong \mathbf{Rt} \triangle AED \ (\mathbf{HL}),$	6分
∴ $AC=AE$, $BP 8+x=12-x$,	7分
解得 $x=2$,即 $CF=2$.	8分
21. 解: (1) 当△ <i>AOP</i> 是等边三角形时,有 <i>OP=OA=AP</i> ,	1 分
$\therefore OA=12, \therefore OP=12.$	3分
(2) 当 $\angle APO = 90$ °时, $OP = \frac{1}{2}OA = 6$.	5分
当∠PAO=90°时,OP=2OA=24.	7分
\therefore 当 $\triangle AOP$ 是直角三角形时, OP =6 或 OP =24.	8分

五、	探究题(本大题共1小题,共10分)	
22.	证: (1) 等腰直角三角形.	2分
	(2) 连接 <i>AD</i> , ∵ <i>AB=AC</i> , <i>D</i> 为 <i>BC</i> 的中点,	
	$\therefore AD \perp BC$, AD 平分 $\angle BAC$.	
	\therefore $\angle BAC=90^{\circ}$, $\therefore AD=BD=CD$, $\angle DAC=\angle ABC=45^{\circ}$.	
	<i>∴</i> ∠ <i>DBE</i> =∠ <i>DAF</i> =135°.	3 分
	$\therefore BE=AF, :: \triangle BDE \cong \triangle ADF.$	4分
	\therefore DE=DF, \angle BDE= \angle ADF.	5分
	\therefore $\angle ADF + \angle BDF = \angle ADB = 90^{\circ}$,	
	\therefore $\angle EDF = \angle BDE + \angle BDF = 90^{\circ}$.	
	$\therefore \triangle DEF$ 是等腰直角三角形.	6分
	(3) △DEF 是等腰直角三角形,其证明过程是:	7分
	连接 AD , $: AB = AC$, D 为 BC 的中点,	
	$\therefore AD \perp BC$, AD 平分 $\angle BAC$.	
	\therefore $\angle BAC=90^{\circ}$, $\therefore AD=BD=CD$, $\angle DAC=\angle ABC=45^{\circ}$.	8分
	\therefore $\angle BDE + \angle EDA = \angle BDA = 90^{\circ}, \ \angle ADF + \angle EDA = \angle EDB$	7=90°.
	$\therefore \angle BDE = \angle ADF$.	
	$"BD=AD, :: \triangle BDE \cong \triangle ADF.$	9分
	$\therefore DE=DF$.	

∵ ∠EDF=90°, **∴** △DEF 是等腰直角三角形.10 分